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Abstract: Background and purpose: Brain function can be networked, and these networks typically
present drastic changes after having suffered a stroke. The objective of this systematic review was
to compare EEG-related outcomes in adults with stroke and healthy individuals with a complex
network approach. Methods: The literature search was performed in the electronic databases
PubMed, Cochrane and ScienceDirect from their inception until October 2021. Results: Ten studies
were selected, nine of which were cohort studies. Five of them were of good quality, whereas four
were of fair quality. Six studies showed a low risk of bias, whereas the other three studies presented a
moderate risk of bias. In the network analysis, different parameters such as the path length, cluster
coefficient, small-world index, cohesion and functional connection were used. The effect size was
small and not significant in favor of the group of healthy subjects (Hedges’g = 0.189 [−0.714, 1.093],
Z = 0.582, p = 0.592). Conclusions: The systematic review found that there are structural differences
between the brain network of post-stroke patients and healthy individuals as well as similarities.
However, there was no specific distribution network to allows us to differentiate them and, therefore,
more specialized and integrated studies are needed.

Keywords: brain function network; electroencephalography; stroke

1. Introduction

Stroke represents one of the most common causes of disability with regards to its
impact on functional limitations [1]. In addition, because of the aging population, the
absolute number of strokes is expected to increase in the coming years [2]. Apart from
the positive and negative clinical features that may appear after a stroke, this type of
neural lesion is typically associated with alterations in the oscillatory brain activity that
can be measured from the lesioned areas in the brain. Typically, lesioned brain regions
present a slowing of rhythmic activity as compared to the contralesional side. This can be
observed by computing the ratio between the power at low frequency (e.g., delta) and high
frequency (alpha/beta/gamma) of spectral components in the EEG [3] Brain connectivity
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also undergoes changes, and this has been researched during the last years [4–13]. At
present, we mainly rely on structural images of the brain affected areas to take clinical
decisions and make predictions about evolution. Brain networks are a relevant feature of
brain function, and these networks typically present drastic changes after a certain region
gets damaged.

Taking all this into account, network analysis can help to improve the clinical charac-
terization of patients with a stroke, since brain networks determine which areas of the brain
are physically or functionally connected to support cognitive and behavioral functions
during the brain’s rest/default state [14]. A “small-world index” (SW) network repro-
duces the competence of the brain networks to locally and globally process the flow of
information [15]. In this regard, through the analysis of EEG graphs, it has been shown
that ischemic stroke leads to a rearrangement of the information flow between the two
hemispheres in the brain, which is frequency-dependent [13]. Regarding the interest in this
field, the number of articles with the ‘Brain Network’ keyword has grown very fast since
1985, and this interest has increased exponentially in the last years, from 8387 research
manuscripts published in 2016 to 14,256 in 2021 in Pubmed.

Studies on network topology highlight functional reorganization after stroke [16,17],
suggesting that changes in the spontaneous functional architecture of the brain connectivity
affecting function could be produced by ischemic lesions [18]. The complexity of functional
brain connectivity can be studied using graph theory, a mathematical approach used to
analyze networks that may be used to analyze the brain’s complex networks through
simplified schemes of nodes and edges [19]. In this field, a network is a mathematical
representation of a complex system in the real world and is defined by a set of nodes
(vertices) and links (edges) between pairs of nodes. Different parameters define the prop-
erties of a network, each of which defines the network in some way. These parameters
are used for network analysis and comparison between networks created from healthy
humans and stroke patients. Brain network theory considers brain segregation as the
network tendency to be organized in clusters and analyzes them using the local and global
clustering coefficient (CC). The local CC calculates the local cohesion of a node with its
neighbors [20]. Additionally, it provides an overall measure of the cohesion of the nodes in
the whole network.

The average shortest path length (PL) parameter is also used to analyze brain inte-
gration. This parameter represents the network ability to exchange information between
distant regions [15–19]. The measure of network small-world index (SW) is defined as
the ratio between CC and PL [21,22]. The SW coefficient is used to describe the balance
between the local connectedness and the global integration of a network. When SW is
larger than 1, a network is said to have small-world index properties. SW organization
mixes short PL and high CC.

The rapid development of imaging technology, such as computed tomography (CT),
positron emission tomography, magnetic resonance imaging (MRI) and EEG, allows re-
searchers to access latent knowledge about brain changes during stroke onset and the re-
covery process [23]. EEG provides a continuous, real-time and non-invasive measurement
of brain function and provides new insights into brain pathophysiology after stroke [24–26].
This technology has the advantage of being widely available, having a low cost and provid-
ing a good compromise in terms of spatio-temporal resolution for superficial structures in
the brain. EEG-based measures can provide neurophysiological biomarkers in the early
pre-treatment phase that may be used to make short- and long-term predictions regarding
the evolution of a patient, and that may even provide relevant information to determine
optimal treatment strategies [3]. Moreover, EEG technologies have advanced significantly
in recent years, making it possible to record signals unobtrusively without needing to move
patients from their beds; it is also possible to test neurofeedback interventions based on
the EEG signal and to modulate certain brain rhythms to study its potential therapeutic
effect [3,27].
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In EEG studies, functional connectivity between two signals can be evaluated by using
a measure of general synchronization [28], such as EEG coherence [29]. The increase of EEG
coherence can be interpreted as a functional coupling between two anatomically separated
regions [30]. In addition, EEG coherence can also be used as a measure of binding by
synchrony and is a proposed solution to the connecting problem [31], the way that the
brain integrates signals separated in space and time [32].

Stroke leads to a large variability in clinical presentation and outcomes [33]. There is
substantial heterogeneity in the procedures and tools used for outcome assessment after
stroke, most of which are poorly validated [34]. Consequently, the heterogeneity in the use
of outcome tools comprises the data quality [33]. No previous works looked into the brain
network changes as an outcome post-stroke. To the authors’ knowledge, there are not any
previous reviews of studies that have carried out brain network analysis of EEG in stroke
patients. Because of this, in this systematic review, our objective is to review the research
carried out on different stroke areas (Broca, cerebellum, middle cerebral artery, thalamus)
and clinical phases (i.e., acute, sub-acute), by networking analysis of EEG and to perform a
meta-analysis of the EEG-related outcomes in stroke patients.

2. Materials and Methods
2.1. Study Design

This systematic review was performed following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [35] and was registered with
the International Prospective Register of Systematic Reviews (PROSPERO), registration
number (reference number: 285761).

2.2. Data Sources

The electronic databases PubMed, Cochrane and ScienceDirect were searched from
their inception until October 2021. Search strategies were performed following the instruc-
tions described by Greenhalgh [36] (see Appendix A). The research question followed the
PICO format: in adults who suffered a stroke episode (P = population), taking EEG from
participants (I = intervention), comparing patients with stroke with healthy individuals
(C = comparison) and analyzing outcomes related to brain network (O = outcome). Due
to the limited number of cohort studies, cross-sectional studies and case reports were
also considered.

2.3. Study Eligibility Criteria

Experimental studies were eligible for inclusion if they met the following criteria:
(1) included patients with stroke, (2) used EEG tools for assessment, (3) used network anal-
ysis and (4) were published in English language. Rehabilitation studies, effect of physical
therapy and/or effect of any other procedure on stroke were excluded. Two independent
reviewers (BA and NC) performed the systematic search and screened the title and abstract
of the articles, with duplicates being removed. The full text of eligible papers was carefully
read to decide whether the eligibility criteria were met. The two reviewers compared their
findings, and a third reviewer (SC) helped to solve any possible discrepancies if needed. Af-
ter the selected articles were considered suitable for inclusion, one reviewer (BA) extracted
the following information: (1) study author(s), (2) year of publication, (3) characteristics
of participants (e.g., sample size, study groups, mean age, sex distribution, and types of
strokes), (4) type of study, (5) type of method used to measure connectivity between nodes,
(6) outcome measures, (7) assessment and intervention protocol and (8) main results. Then,
a second reviewer (NC) verified the findings, and possible disagreements were discussed.

The Newcastle–Ottawa Scale was used to assess the risk of bias and the quality of
nonrandomized studies in meta-analyses [37]. Three factors were considered to score
the quality of included studies: (1) selection, including representativeness of the exposed
cohort, selection of the non-exposed cohort, ascertainment of exposure and demonstration
that at the start of the study the outcome of interest was not present; (2) comparability,
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assessed on the basis of study design and analysis, and whether any confounding variables
were adjusted for; and (3) outcome, based on the follow-up period and cohort retention
and ascertained by independent blind assessment, record linkage or self-report. The
quality of the studies (good, fair and poor) was rated by awarding stars in each domain
following the guidelines of the Newcastle–Ottawa Scale. A “good” quality score required
3 or 4 stars in selection, 1 or 2 stars in comparability and 2 or 3 stars in outcomes. A “fair”
quality score required 2 stars in selection, 1 or 2 stars in comparability and 2 or 3 stars in
outcomes. A “poor” quality score reflected 0 or 1 star(s) in selection, 0 stars in comparability
or 0 or 1 star(s) in outcomes.

2.4. Data Analysis

For the statistical analysis, the program R Ver. 4.1.2 was used (R Foundation for Statis-
tical Computing, Institute for Statistics and Mathematics, Welthandelsplatz 1, 1020 Vienna,
Austria). In the articles showing the results with median and interquartile range, these
were transformed into mean and standard deviation using the appropriate formulas [38,39].
The combination of groups and the average of the means and standard deviations were
performed using the appropriate formulas [40]. Data were obtained by request from the
authors and, when it was not possible, by extracting data from the graphs available in
the articles (since these did not present them in table format) using the webplotdigitizer
software [41].

A meta-analysis was carried out taking the small-world index (SW) as measure of
brain networks. A random effects model was applied given the heterogeneity between the
studies and analyzing the level of significance between the groups of patients and healthy
participants through the standardized difference of means (SMD), based on the mean,
standard deviation and sample size in each group. Heterogeneity was analyzed by esti-
mating the between-studies variance τ2 (calculated with the DerSimonian–Laird estimator
with Hartung–Knapp correction), with the Cochran Q test as well as with the I2 estimator
being defined with the latter as: 0–30%, unimportant heterogeneity; 30–50%, moderate
heterogeneity; 50–75%, large heterogeneity; and 75–100%, significant heterogeneity. The
effect size was calculated with Hedges’g, defined as small effect below 0.2, moderate effect
between 0.2 and 0.8 and big effect above 0.8.

Heterogeneity was assessed by detecting the following: (1) outlier studies, defined
as studies with extreme effect sizes whose confidence interval does not overlap with the
confidence interval of the pooled effect and differs significantly from the overall effect [42];
and (2) influencing studies, defined as those which have a large impact on the pooled effect
or heterogeneity, regardless how high or low the effect is [42]. To analyze heterogeneity,
the following were used: (1) influence graphs, which indicate the fit of the studies to the
model; (2) Baujat plots, which detect studies that overly contribute to the heterogeneity
in a meta-analysis ([43]); and (3) leave-one-out meta-analysis, which are forest plots with
recalculated pooled effects, with one study omitted each time. In addition, a Graphic
Display of Heterogeneity (GOSH) was used, which plots the pooled effect size on the x-axis
and the between-study heterogeneity on the y-axis, which allows for looking for specific
patterns or clusters with different effect sizes and amounts of heterogeneity [44].

Subgroup meta-analysis were performed to explore the detected heterogeneity de-
pending on the mode to calculate SW brain networks: direct SW (SW calculated directly),
ratio of the raw weighted clustering coefficient (Cw), weighted characteristic path length
(Lw) or the ratio of raw global efficiency (Eg) to local efficiency (El). Publication bias was
analyzed using the Begg and Eggers tests and standard and trim and fill funnel plots [45].
Finally, the overall and subgroup meta-analysis powers were calculated.

3. Results

The PRISMA flow diagram (Figure 1) illustrates the screening process. The electronic
search identified 64 records, and 2 other results were added through alternative sources.
After removing 2 duplicated articles, 47 manuscripts were excluded for not meeting the
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inclusion criteria. From the 17 results selected, 7 of them were removed for not meeting the
eligibility criteria. Finally, a total of 10 studies were kept, 9 of which were cohort studies.
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Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart.

Table 1 summarizes the studies included in this systematic review investigating the
analysis of brain networks in stroke patients [4–13]. These studies include research on
stroke that has had effects such as hemianopsia [8] and Broca [5] in patients. In all the
included studies, the presence of a lesion in the brain was observed, and in fact, the lesion
caused a change in the network, which is discussed below. All included studies are case–
cohort studies [4–10,12,13] except one, which was a cross-sectional study [11] that helps to
understand the network change at the time of stroke and after. The networking methods in
the studies were different, as well as the analysis performed, although they all had some
similarities. In the network analysis, different parameters were used, which include the
PL, CC, SW, cohesion and functional connection (FC). Each of the articles examined some
parameters and were not consistent in this regard.
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Table 1. Data of the studies investigating the analysis of brain networks in stroke patients.

Study Population Control Intervention Outcome Results

Liu, Shuang
et al., 2016 [6]

30 acute thalamic
ischemic stroke

patients

30 healthy
subjects

EEG in resting
condition with eyes

closed was recorded.

The functional
connectivity was
estimated with
partial directed

coherence (PDC) [46].

Compared to the control group, the
stroke group showed a trend of

weaker cortical connectivity and a
symmetrical pattern of functional
connectivity; that is, there was less

information transfer between
electrodes on the brain.

Vecchio,
Fabrizio et al.,

2019 [4]

30 patients with
middle cerebral

artery stroke and
11 with

cerebellar stroke.

30 healthy
subjects

EEG was measured
in resting state (at

least 5 min) with eyes
closed with

19 electrodes in the
International
10–20 system
position and

sampling rate fixed at
256 Hz.

Functional
connectivity of EEG
data was carried out
with eLORETA. The
eLORETA algorithm

is a linear inverse
solution for detection

of the EEG signals’
source [47].

Beta2 and gamma small-world
index were increased in the right

hemisphere of patients with
cerebellar stroke, respectively,

compared to healthy subjects, while
the alpha 2 small-world index was

increased only in patients with
middle cerebral stroke. Cerebellar

stroke differed from MCA in that it
did not cause reorganization of the
alpha 2 network, whereas it caused

reorganization of the
high-frequency network in the beta

2 and gamma bands with
small-world index enhancement.

Rutar Gorišek,
Veronika et al.,

2016 [5]
10 Broca’s patients 10 healthy

subjects

The testing and EEG
recordings were

performed from 10 to
90 days (mean

54.4 ± SD 30.7) after
the ischemic stroke.

Coherences were
calculated by using

the mscohere
function in Matlab.

It was shown that the precise
balance between task-related theta

synchronization and
desynchronization found in healthy
subjects was severely disrupted in

Broca’s patients, and functional
networks in the theta frequency

band were significantly altered in
the patient group.Gamma

desynchronization was widespread
in healthy controls, but in Broca

patients, task-related
desynchronization was less in the
right hemisphere, and functional

networks in the gamma frequency
band were significantly altered in

the patient group.

Vecchio,
Fabrizio et al.,

2019 [7]

139 consecutive
patients were

enrolled in the acute
phase of stroke

110 healthy
subjects

The EEG recording
was performed at

rest, with closed eyes.

EEG functional
connectivity analysis
has been performed
using the eLORETA.

When comparing the patients with
the control group, there were

significant differences, with higher
levels of SW in the healthy
subjects.A strong negative

correlation was found between the
NIHSS at follow-up and the

small-world index gamma index in
the acute phase, giving the SW

gamma index a predictive weight
for recovery.

Wang, Lei
et al., 2012 [8]

7 stroke patients with
hemianopia

7 healthy
control
subjects

EEG data were
recorded with

30 scalp electrodes
with the patient kept

awake with eyes
closed throughout

the EEG recording for
2 min.

Phase
synchronization

index (PSI) [48] has
been used.

For each case of the brain network
with a different number of edges,

the weighted clustering coefficient
of the network of hemianopia stroke

patients seems to be generally
higher than that of the normal

control group.Hemianopia stroke
patients generally had a lower

weighted characteristic path length
than the control group.
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Table 1. Cont.

Study Population Control Intervention Outcome Results

Dubovik,
Sviatlana et al.,

2013 [9]
20 stroke patients 19 healthy

participants

EEG was recorded
with a 128-channel
EEG system in an

awake, resting
condition with eyes

closed.

The electromagnetic
neural activity at
each gray matter

voxel was
reconstructed with an
adaptive spatial filter

(beamformer)

Increased functional connectivity
(FC) was observed in non-lesioned
areas. These changes were mostly

related to the alpha frequency band,
and FC in the dysfunctional brain

regions was consistently reduced in
the alpha frequency band.

De Vico Fallani,
Fabrizio et al.,

2009 [10]
1 stroke patient 8 healthy

subjects

EEG signals were
recorded with a

sampling frequency
of 2048 Hz from 128

scalp electrodes.

Brain functional
connectivity is

achieved through the
computation of

task-related
coherence.

The differences mainly involved the
highest spectral contents (beta and
gamma bands). In these bands, the
global and local performances of the
patient were statistically lower than

the control subjects in the PRE
(during the planning period) and

EXE (movement execution)
intervals.Network topology
changes were particularly

prominent in the beta band, which
is already involved in motor tasks
[45], as well as in the gamma band.

Vecchio,
Fabrizio et al.,

2017 [11]

A 72-year-old patient
with stroke

Before and
during a

stroke attack

EEG Holter was
recorded for

evaluating signs of
stroke-related

epilepsy.

Magnitude squared
coherence used

(mscohere)

SW decreases in stroke and
increases after stroke.SW decrease
in the delta band and SW increase

in the alpha bands.Coherence
decreases during stroke and

increases after stroke.

Fanciullacci,
Chiara et al.,

2021 [12]

33 unilateral post
stroke patients in the

sub-acute phase:
cortico-subcortical

(n = 18) and
subcortical (n = 15)

10 healthy
subjects

EEG was recorded
for 10 min with a

10/20 EEG system in
an awake, resting

condition with eyes
closed.

to explore
interconnectivity

between the ROIs,
and intracortical

lagged linear
coherence was

computed

In both groups of patients,
compared to healthy subjects, there
was an increase in the small-world
index of the resting-state network in

the θ band.β-band network
measures differed significantly
between stroke patients, with

greater resolution and small-world
index in patients with cortical

involvement.

Caliandro,
Pietro et al.,

2017 [13]

30 patients with
ischemic lesion

30 healthy
subjects

The EEG recording
was performed at

rest, with eyes closed
and no task condition

for at least 5 min
from 19 electrodes.

Connectivity analysis
using eLORETA in
both hemispheres.

Resting-state network changes were
mainly detected in low- and

medium-frequency EEG bands, i.e.,
delta, theta and alpha 2 rhythms,
while no network reorganization
was found in alpha 1, beta and

gamma bands.

The evaluation of the quality and risk of bias of cohort studies is shown in Table 2; five studies were of good
quality [4,5,7,8,13] and four were of fair quality [6,9–11].

The risk of bias analysis is shown in Figure 2. Six studies showed a low overall risk of
bias [5–7,9,12,13]. However, three studies presented an overall moderate risk of bias due to
some concerns about outcome measures and reported outcomes [4,8,10]. The overall risk
of bias is low to moderate due to missing data and the selection of reported studies.

Only one of the studies [11] assessed was a cross-sectional study (see Table 3). The
study [11] included in this review does not have a sufficiently defined protocol, and the
analysis was not repeated by more than one researcher to ensure reliability. However, it
has many positive strengths that are indicated in Table 3 with the answer “yes”.
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Table 2. Risk of bias assessment (Newcastle–Ottawa Quality Assessment Scale criteria).

Study

Selection Comparability Outcome

Quality ScoreRepresentativeness
of Exposed

Cohort

Selection of the
Non-Exposed
Cohort from

Same Source as
Exposed Cohort

Ascertainment of
Exposure

Outcome of
Interest Was Not
Present at Start of

Study

Comparability of
Cohorts

Assessment of
Outcome

Follow-up Long
Enough for
Outcome to

Occur

Adequacy of
Follow-Up

Liu, Shuang
et al., 2016 [6]

Participants were
in two groups:

ischemic thalamic
stroke (n = 30) and
the healthy group

(n = 30). F

Yes F

Inclusion criteria of
the patients consisted

of focal ischemic
lesion of the thalamus
and hand numbness as

symptoms.

Yes F Nothing matched

Comparison of
parameters of brain

network between
ischemic thalamic

stroke patients and
healthy group.

Yes F

All stroke patients
from whom EEG

was taken
participated in the

study. F

Fair

Vecchio,
Fabrizio et al.,

2019 [4]

Patients were in
two groups:

cerebellar and
middle cerebral
artery strokes
(n = 30) and

healthy group
(n = 30). F

Yes F

The patients were
clinically assessed by

the National Institutes
of Health Stroke Scale

(NIHSS) during the
acute phase.

Yes F Age and gender
matched F

Comparison of
parameters of brain

network between
stroke patients and

healthy group.

Yes F

All stroke patients
from whom EEG

was taken
participated in the

study. F

Good

Rutar Gorišek,
Veronika et al.,

2016 [5]

Participants were
in two groups:

Broca’s patients
(n = 10) and

healthy group
(n = 10). F

Yes F
Boston Diagnostic

Aphasia Evaluation
(BDAE)

Yes F Sex and education
matched F

Comparison of
parameters of brain

network between
stroke patients and

healthy group.

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Good

Vecchio,
Fabrizio et al.,

2019 [7]

Participants were
in two groups:
patients with

stroke in the acute
phase (n = 139)

and healthy group
(n = 110). F

Yes F

All patients were
clinically evaluated
with three scales for

stroke: NIHSS, Barthel
and ARAT.

Yes F Sex and age
matched F

Comparison of
parameters of brain

network between
stroke patients and

healthy group.

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Good

Wang, Lei
et al., 2012 [8]

Participants were
in two groups:
stroke patients

(n = 7) and healthy
controls (n = 7). F

Yes F

All patients were
diagnosed with

hemianopia stroke
according to visual
threshold test and
MRI/CT scanning.

Yes F Sex and age
matched F

Comparison of
parameters of brain

network between
stroke patients and

healthy group.

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Good
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Table 2. Cont.

Study

Selection Comparability Outcome

Quality ScoreRepresentativeness
of Exposed

Cohort

Selection of the
Non-Exposed
Cohort from

Same Source as
Exposed Cohort

Ascertainment of
Exposure

Outcome of
Interest Was Not
Present at Start of

Study

Comparability of
Cohorts

Assessment of
Outcome

Follow-up Long
Enough for
Outcome to

Occur

Adequacy of
Follow-Up

Dubovik,
Sviatlana

et al., 2013 [9]

Participants were
in two groups:
patients with

ischemic stroke
(n = 20) and

healthy
participants
(n = 19). F

Yes F

Motor function was
evaluated by means of

the Jamar
dynamometer, the

Nine Hole Peg test, the
Stroke Rehabilitation

Assessment of
Movement (STREAM)
and the Fugl–Meyer

score.

Yes F Age matched

Assessment
resting-state functional

connectivity with
(EEG).

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Fair

de Vico
Fallani,

Fabrizio et al.,
2009 [10]

Participants were
in two groups:

healthy subjects
(n = 8) and one

patient with
stroke. F

Yes F No information Yes F Nothing matched

Analysis of cerebral
electro-physiological

activity during
planning or execution

of movement in in
stroke patients.

Yes F

All patients and
healthy people

from whom EEG
was taken

participated in the
study. F

Fair

Fanciullacci,
Chiara et al.,

2021 [12]

Participants were
in two groups:

stroke patients in
the sub-acute

phase (n = 33) and
healthy subjects

(n = 10). F

Yes F
Brain injury was

assessed by means of a
standard CT scan.

Yes F Age matched

Characterizing
resting-state EEG

activity and functional
connectivity changes

in a cohort of
unilateral ischemic
patients compared

with the healthy
group.

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Fair

Caliandro,
Pietro et al.,

2017 [13]

Participants were
in 2 groups:

patients with
ischemic lesion

(n = 30) and
healthy subjects

(n = 30). F

Yes F

Patients were clinically
evaluated by the

National Institutes of
Health Stroke Scale.

Yes F Age and sex
matched F

Whether and how
ischemic stroke in the

acute stage may
determine changes in
the small-world index
of cortical networks.

Yes F

All patients from
whom EEG was

taken participated
in the study. F

Good

F The quality of the studies (good, fair and poor) was rated by awarding stars in each domain following the guidelines of the Newcastle–Ottawa Scale. A “good” quality score required
3 or 4 stars in selection, 1 or 2 stars in comparability and 2 or 3 stars in outcomes. A “fair” quality score required 2 stars in selection, 1 or 2 stars in comparability and 2 or 3 stars in
outcomes. A “poor” quality score reflected 0 or 1 star(s) in selection, 0 stars in comparability or 0 or 1 star(s) in outcomes.
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the RoB of each included clinical trial and the weighted plot for the assessment of the overall risk of
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of bias, and green circle represents low risk of bias [4–10,12,13].

Table 3. Quality assessment for cross-sectional study.

Vecchio, Fabrizio et al., 2017 [11]

Did the study address a clearly focused question/issue? Yes

Is the study design appropriate for answering the research question? Yes

Does the study have a well-defined protocol? No

Are both the setting and the subjects representative with regard to the population to
which the findings will correlate? Yes

Is the researcher’s perspective clearly described and taken into account? Yes

Are the methods for collecting data clearly described? Yes

Are the methods for analyzing the data likely to be valid and reliable? Are quality
control measures used? Yes

Was the analysis repeated by more than one researcher to ensure reliability? No

Are the results credible, and if so, are they relevant for practice? Are results easy
to understand? Yes

Were there clinically relevant outcomes? Yes

Are the conclusions drawn justified by the results? Yes

Are the findings of the study transferable to other settings? No
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Meta-Analysis

The presence of relatively high values for τ2 (0.25), the significant Cochrane Q test
(p = 0.04) and the value of I2 of the 60% indicate large heterogeneity. The effect size is small
and not significant in favor of the group of healthy subjects (Hedges’g = 0.189 [−0.714,
1.093], Z = 0.582, p = 0.592) (Figure 3).
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Figure 3. Meta-analysis forest plot for small-world index brain network measure on healthy subjects
vs. stroke patients. SD: standard deviation; SMD: standardized mean difference; 95%CI: 95%
confidence interval; Tau2: τ2 between studies variance estimation; Chi2: Cochran Q test; df: degrees
of freedom; I2: proportion of the variance in observed effect is due to variance in true effects rather
than sampling error [7,8,10,12,13].

No study analyzed is an outlier that exceeds the 95% CI (Appendix A, Figure A1). The
influence analysis shows how the study published by Fanciullacci (red dot) exerts a great
influence on the result of the meta-analysis (Appendix A, Figure A2). The Baujat graph
shows again that the Fanciullacci study (upper right square dot) also exerts an excessive
influence on the heterogeneity detected (Appendix A, Figure A3). The sensitivity analysis
to the withdrawal of a study indicates, both by effect size and by I2 values, that the study
published by Fanciullacci is the one that most influences the result of the meta-analysis
(Appendix A, Figure A4). The GOSH graph shows the presence of two clusters of studies
with a heterogeneity around 60–80% and 0–20% respectively, with an effect that oscillates
around 0 and 0.5 in both (Appendix A, Figure A5).

When the meta-analysis of subgroups was carried out, we found that there is a decrease
in heterogeneity in the studies carried out with Raw Cw, Lw (I2 changes from 60% to 0%),
whereas there is an increase in the studies carried out with Direct SW (I2 changes from 60%
to 79%). Therefore, it is possible that studies with Direct SW are responsible for part of
the heterogeneity detected. We verified how the effect size in the studies carried out with
Raw Cw-Lw is small and not significant in favor of the group of healthy subjects (Hedges’s
g = 0.008, [−2.229, 2.245], Z = 0.047, p = 0.97). In the group of studies carried out with Direct
SW, the effect size is moderate and not significant and displaced in favor of the group of
healthy subjects (Hedges’s g = 0.535, [−6.76, 7.831], Z = 0.932, p = 0.522). Finally, in the
study carried out with Raw Eg-El, the effect size is large and not significant and displaced
in favor of the patient group (Hedges’s g = −1.431, [−3.416,0.555], Z = −1.412, p = 0.158).
Therefore, it can be concluded that none of the study groups produced significant effects.
Despite the disparity of the effect in each group (0.008 vs. 0.535 vs. −1.431), there are no
significant differences in the effect between groups depending on the calculation mode of
the SW (X2(2) = 2.86, p = 0.239) (Figure 4).

The tests of Begg (Kendall’s τ = 0, p = 1) and Eggers (t(3) = −1.187, p = 0.321) were not
significant and indicate the absence of publication bias. The funnel plots (both the standard
and the one obtained with trim and fill method) show a symmetrical distribution except
for the study carried out by Fallani, which corroborates the absence of publication bias
(Appendix A, Figure A6).
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Figure 4. Subgroup forest plots for the different calculation methods of small-world index on
healthy subjects vs. stroke patients. Cw: weighted clustering coefficient; Lw: weighted characteristic
path length; Eg: global efficiency; El: local efficiency. SD: standard deviation; SMD: standardized
mean difference; 95%CI: 95% confidence interval; Tau2: τ2 between studies variance estimation;
Chi2: Cochran Q test; df: degrees of freedom; I2: proportion of the variance in observed effect is due
to variance in true effects rather than sampling error [7,8,10,12,13].

4. Discussion

Studying cortical connectivity changes in stroke can provide novel ways to characterize
clinical rehabilitation and suitable therapies for patients with brain lesions leading to
cognitive or motor disability. Here, we revise the existing literature supporting the use of
EEG-based metrics to analyze brain networks and how they are altered in stroke patients.
Despite the identified differences between the studies considered here in terms of recording
conditions (e.g., devices or number of channels used) and metrics used to assess cortico-
cortical connectivity, it was possible to find a common conclusion in them: the brain network
of stroke patients was shown to be different from that of healthy people. These differences
were only found in specific frequency bands. For example, there were neither significant
differences between post-stroke patients with hemianopia and the healthy controls in the
global weighted CC and PL [8] parameters nor in the network rearrangement in alpha 1,
beta and gamma bands [13].

In all the studies analyzed, the internal structure of the brain network changed
compared to healthy humans. The greatest impact was observed in the affected areas,
which showed weaker connections. If we consider delta, theta and alpha bands as low-
frequency bands, and assume beta and gamma as high-frequency bands, the functional
and topological network in high-frequency bands in patients after an acute stroke show
changes [4,5,7,10,12,13]. However, no conclusion can be drawn with certainty about the
SW index: in some studies, the patients had a higher SW in different bands [4,12], whereas
in others [11], the SW index increased after stroke. However, another study showed that
the SW parameter was higher in the control group [7]. It could be expected that healthy
patients have a higher SW so that transfer data in the brain is done faster from one point to
another, following the shortest path length, but this is still unclear, and data obtained in
different populations are still controversial.

As in the case of the small-world index, no statistically significant differences were
found in indices, such as the shortest path length and clustering coefficient, although
recently a case study showed significant changes in these parameters when the analysis
was performed by dynamic complex network, which shows higher variations in the global
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clustering coefficient and small-world index and lower variations in the average shortest
path length in the low-frequency bands, such as delta, theta and alpha bands, in the chronic
stroke patients [49].

Although evidence suggests that connections are less in the brain of post-stroke
patients, a model of brain network cannot be clearly considered, or there is not a standard
by which patients with stroke can be recognized. However, the immediate EEG changes
observed after stroke are a direct consequence of cerebral blood flow reduction that later
results in neuronal impairment or neuronal death. This neuronal impairment in turn leads
to a disorganization of the electrical activity that is reflected by the global EEG changes [50].
Subsequent neuroplastic changes after stroke have been largely reported [51]. Post-stroke
neuroplasticity can lead to reorganization in neural circuits that allow for regaining the
lost functionality [52,53]. However, according to our knowledge, there have not been any
publications discussing how neuroplasticity after a stroke leads to changes in brain network
parameters measured with EEG.

Oscillating neural activity in the gamma frequency band is involved in several cog-
nitive functions, including visual object processing [54,55], attention [56,57] and mem-
ory [58,59]. Additionally, several studies have demonstrated that gamma band activity
is strongly associated with behavioral performance in several memory tasks [60,61] and
that there is a higher gamma band activity in participants exhibiting superior recognition
memory performance [62]. Other findings [63,64] suggest that gamma oscillations not only
reflect brain activity related to memory processes, but also vary with the memory ability
of individuals. Two of the studies included in the review [5,7] described variation in the
gamma band, which could be supported by evidence that suggests that gamma oscillations
mediate information transfer between cortical and hippocampal structure for memory
abilities [58,59].

With some exceptions, a consensus is reached on how an increase in the slow band
frequencies, referred to as slow oscillation and delta oscillation, and is associated with not
only the slow-wave sleep state, but also brain ischemia. Conversely, high band frequencies,
such as the alpha, beta and gamma oscillations, are associated with wake states or cognitive
task engagement, and their presence frequently reduces after stroke. As it was found in one
study [10], changes were seen in gamma and beta bands. A possible explanation could be
that coherence in higher bands may be more involved in active (either motor or cognitive)
tasks [30–32].

In our review, differences in EEG signals were observed not only in parameters, but
also in different bands. For example, in one study [13], changes were seen in low-frequency
bands (delta, theta and alpha2), and no difference was seen in higher-frequency bands
(alpha1, beta and gamma), which is consistent with the results of a recent case study [49].
In other studies, changes were seen in alpha [7,9] and theta and beta bands [12]. The
changes in the different bands that are seen can be related to the type of stroke, the type of
networking of the brain regions, the resting or active state, the examined area of the brain
and the age of the patient [65].

Regarding the usefulness of EEG-based connectivity measures to assess brain function
in stroke, we found some limitations related to the heterogeneity of the injured areas in the
patients participating in the studies included in our meta-analysis. Future studies should
include larger samples and grouping patients in terms of the exact locations of their lesions,
which would allow us to further understand how the spatial location of a brain lesion
affects the rearrangement of brain connections at the local and global scales.

5. Conclusions

This is the first systematic review carried out about EEG connectivity changes to
diagnose or characterize stroke. The systematic review found that there are structural
differences between the brain network of post-stroke patients and healthy individuals as
well as similarities. However, there is no specific distribution network that allows us to
differentiate them and, therefore, more specialized and integrated studies are needed.
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time from one study; Covariance ratio: ratio between variance pooled effect and initial average effect;
tau-squared (L-O-O): tau squared leave-one-out plot is the heterogeneity measure by tau squared
removing a single study each time; Q (L-O-O): Cochrane test leave-one-out plot is the heterogeneity
measure Cochran Q test removing a single study each time; hat: model predictions for each study;
weight: studies’ weight. Red points are influencing studies, blue points are not influencing studies.
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3. Ajčević, M.; Furlanis, G.; Miladinović, A.; Buoite Stella, A.; Caruso, P.; Ukmar, M.; Cova, M.A.; Naccarato, M.; Accardo, A.;
Manganotti, P. Early EEG alterations correlate with CTP hypoperfused volumes and neurological deficit: A wireless EEG study in
hyper-acute ischemic stroke. Ann. Biomed. Eng. 2021, 49, 2150–2158. [CrossRef]

4. Vecchio, F.; Caliandro, P.; Reale, G.; Miraglia, F.; Piludu, F.; Masi, G.; Iacovelli, C.; Simbolotti, C.; Padua, L.; Leone, E. Acute cere-
bellar stroke and middle cerebral artery stroke exert distinctive modifications on functional cortical connectivity: A comparative
study via EEG graph theory. Clin. Neurophysiol. 2019, 130, 997–1007. [CrossRef]
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